

Determination of Speech level reduction according to ISO 23351:2020

Object: Abstracta ZEN POD

Technical Note no.:	20220105.1		
Customer	Abstracta		
Report author:	Lars Wester, LW decibel ab		
Signature:			
Report reviewed:	Mats Knutsson, LW decibel ab		
Signature:			
Measurements carried out by:	Lars Wester, LW decibel ab		
Measurement results reviewed by:	Mats Knutsson, LW decibel ab		

1. General information

The measurements have been carried in conformity with ISO23351:2020.

Measurement date and time: 2021-12-20 and 21.

2. Test environment and test specimen

The test room meets the requirements on diffusion of sound field according to ISO354:2003 6.1.3 and Annex A. Controlled December 2020

The Sound Absorption Area for the empty test room meets the requirements according to ISO354:2003 6.1.4. Controlled December 2020

Test room nr 81 Room Volume 244 m³ Room surface area 235 m²

Measurement	Temperature	Relative humidity	Static pressure
T ₀ and A ₀	19,0°C	23,0%	1018 bar
T ₁ and A ₁	18,9°C	22,9%	1019 bar
L_{W0}	19,1°C	23,2%	1018 bar
L_{W1}	19,3°C	23,4%	1018 bar

Description of the test specimen:

- 1. Manufacturer
- 2. Type
- 3. Parts of the test specimen
- 4. External dimensions
- 5. Thickness and description of sound absorbing and sound insulating material layers
 - a. Layer 1
 - b. Layer 2

etc.

The test objects were positioned inside the reverberation room according to below:

Abstracta ZENPOD

Measurement of L_{W1}

Picture 1 and 2: Test Object in the test room. 2 positions for L_{W1} measurements All in all 2 object positions and 8 microphone positions for each one of these

Measurement of Lwo

Picture 3 and 4: Loudspeaker and Microphones for L_{W0} measurements All in all 2 loudspeaker positions and 8 microphone positions for each one of these.

Measurement of T_0 and T_1

Mesurement of T_0 and T_1 according to ISO354.

3. Instrumentation

Dynamic signal analyser Data Translation DT9837A

Software Spectra Plus DT

Microphone 1 B&K Type 4942-A-021 Serial No: 2360828

Microphone 2 BSWA MP201 Serial No: 560130

Microphone 3 B&K Type 4942-A-021 Serial No: 2360830 Microphone 4 B&K Type 4942-A-021 Serial No: 2360845

Power Amplifier B&K Type 2706

Climate sensor "Klima Series"; Temperature, Relative humidity, and pressure

Omni directional loudspeaker

Calibrator Bedrock 86065

System Calibration for all four microphones carried out at 8.30 am 2020-12-21 and 5.45 pm 2020-12-22.

4. Acoustical data

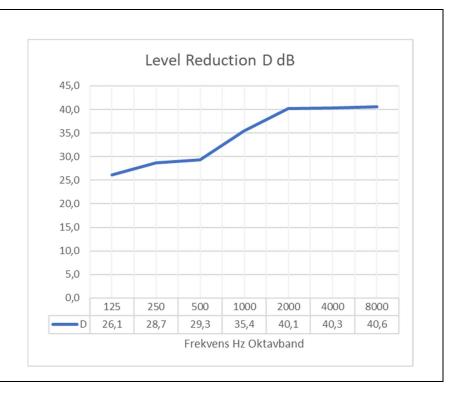
Reverberation times T0 and T1 were measured using 4 different microphones and one omni directional loudspeaker in 3 different positions according to drawing 1.

Object positions, loudspeaker positions, microphone positions and number of microphone positions:

L_{W0} and measurements 2 loudspeaker positions and 8 microphone positions for each one of these

L_{W1} 2 object positions with the loudspeaker inside and 8 microphone positions for each one of these

The results are only valid for tested specimen configuration. Change in size, geometry or materials can lead to significant changes in reported results.


Measurement Results Abstracta ZENPOD

Level reduction

Speech level reduction

 $D_{S,A} = 30.8 dB$

Class: A

